25,156 research outputs found

    Computation of the intervals of uncertainties about the parameters found for identification

    Get PDF
    A modeling method to calculate the intervals of uncertainty for parameters found by identification is described. The region of confidence and the general approach to the calculation of these intervals are discussed. The general subprograms for determination of dimensions are described. They provide the organizational charts for the subprograms, the tests carried out and the listings of the different subprograms

    Low energy spin fluctuations in the heavy fermion compound Ce0.925_{0.925}La0.075_{0.075}Ru2_{2}Si2_{2}

    Full text link
    We report inelastic neutron scattering measurements performed on a single crystal of the heavy fermion compound Ce0.925_{0.925}La0.075_{0.075}Ru2_{2}Si2_{2}, which is at the borderline between an antiferromagnetically ordered and a paramagnetic ground state. Intensity maps as a function of wavevector and energy (0.1<E<1.20.1<E<1.2 meV) were obtained at temperatures T=0.1T=0.1 and 2 K, using the time-of-flight spectrometer IRIS. An unexpected saturation of the relaxation rate and static susceptibility of the spin fluctuations is found at low temperatures.Comment: 2 pages, 2 figures, SCES'04 Proceeding

    Pressure dependence of the spin dynamics around a quantum critical point : An inelastic neutron scattering study of Ce0.87La0.13Ru2Si2

    Full text link
    Inelastic neutron scattering experiments performed on a single crystal of the antiferromagnetic compound Ce0.87_{0.87}La0.13_{0.13}Ru2_{2}Si2_{2} under applied pressures of up to 5 kbar are reported. A quantum critical point is reached at around 2.6 kbar where long-range magnetic order disappears. The variation of the characteristic energy scales with respect to temperature and pressure is followed and found to saturate in the ordered phase.Comment: 14 pages (6 figures

    The pre-shock gas of SN1006 from HST/ACS observations

    Full text link
    We derive the pre-shock density and scale length along the line of sight for the collisionless shock from a deep HST image that resolves the H alpha filament in SN1006 and updated model calculations. The very deep ACS high-resolution image of the Balmer line filament in the northwest (NW) quadrant shows that 0.25 < n_0 < le$ 0.4 cm-3 and that the scale along the line of sight is about 2 x 10^{18} cm, while bright features within the filament correspond to ripples with radii of curvature less than 1/10 that size. The derived densities are within the broad range of earlier density estimates, and they agree well with the ionization time scale derived from the Chandra X-ray spectrum of a region just behind the optical filament. This provides a test for widely used models of the X-ray emission from SNR shocks. The scale and amplitude of the ripples are consistent with expectations for a shock propagating though interstellar gas with ~ 20% density fluctuations on parsec scales as expected from studies of interstellar turbulence. One bulge in the filament corresponds to a knot of ejecta overtaking the blast wave, however. The interaction results from the rapid deceleration of the blast wave as it encounters an interstellar cloud.Comment: 16 pages, 6 figures, to appear in Ap

    IUE observations of oxygen-rich supernova remnants

    Get PDF
    The IUE observations were used to determine the composition of the ejecta (especially C and Si abundances) and to test models for the ionization and excitation of the ejecta of two oxygen-rich supernova remnants (N132D in the Large Magellanic Cloud and 1E 0102-7219 in the Small Magellanic Cloud). Time-dependent photoionization by the EUV and X-ray radiation from 1E 0102-7219 can qualitatively explain its UV and optical line emission, but the density and ionization structures are complex and prevent a unique model from being specified. Many model parameters are poorly constrained, including the time dependence and shape of the ionizing spectrum. Moreover, the models presented are not self-consistent in that the volumes and densities of the optically emitting gas imply optical depths of order unity in the EUV, but absorption of the ionizing radiation was ignored. It is possible that these shortcomings reflect a more fundamental limitation of the model assumptions. It is assumed that the electron velocity distribution is Maxwellian and that the energy deposited by photoionization heats the electrons directly. The 500 eV electrons produced by the Auger process may excite or ionize other ions before they slow down enough to share their energy with other electrons. Many of the excitations would produce photons that could ionize lower ionization stages

    Low energy magnetic excitation spectrum of the unconventional ferromagnet CeRh3_{3}B2_{2}

    Full text link
    The magnetic excitation spectrum of the unconventional ferromagnet CeRh3_{3}B2_{2} was measured by inelastic neutron scattering on single crystal sample in the magnetically ordered and paramagnetic phases. The spin-wave excitation spectrum evidences high exchange interaction along the c-axis about two orders of magnitude higher than the ones in the basal plane of the hexagonal structure. Both strong out of plane and small in plane anisotropies are found. This latter point confirms that considering the JJ=5/2 multiplet alone is not adequate for describing the ground state of CeRh3_{3}B2_{2}. Quasielastic scattering measured above TCurieT_{Curie} is also strongly anisotropic between the basal plane and the c-axis and suggests localized magnetism.Comment: 8 Figure
    corecore